
". N L I l l L l ~ ~ me~ngence, Kobotics, and Automation for Space "I-SAIRAS 99", Noordwijk, The Netherlands
c

.
Advanced Design and Implementation of a Control Architecture

for Long Range Autonomous Planetary Rovers

A. Martin-Alvarez l , S. Hayati, R. Volpe, R. Petras

Autonomy and Control Section
Jet Propulsion Laboratory / California Institute of Technology

Mail Stop 198-219
4800 Oak Grove Drive,

Pasadena, CA 9 1 109
e-mail: alex@telerobotics.jpl.nasa.gov

Tel: (818) 354-4725 Fax: (8 18) 393-5007

ABSTRACT

An advanced design and implementation of a Control Architecture for Long Range Autonomous
Planetary Rovers is presented using a hierarchical top-down task decomposition, and the common
structure of each design is presented based on feedback control theory. Graphical programming is
presented as a common intuitive languague for the design when a large design team is composed of
managers, architecture designers, engineers, programmers, and maintenance personnel. The whole
design of the control architecture consists in the c1as;ic control concepts of cyclic data processing
and event-driven reaction to achieve all the reasoning and behaviors needed. For this purpose, a
commercial graphical tool is presented that includes !he mentioned control capabilities. Messages
queues are used for inter-communication among control functions, allowing Artificial Intelligence
(AI) reasoning techniques based on queue manip~~lation. Experimental results show a highly
autonomous control system running in real time on top the JPL micro-rover Rocky 7 controlling
simultanously several robotic devices. This paper validates the sinergy between Artificial
Intelligence and classic control concepts in having an advanced Control Architecture for Long
Range Autonomous Planetary Rovers

1. Introduction

A highlv autonomous rover is desired in a planetarv exploration mission. The human on ground only
needs appropriately abstracted state and status feedback in the telemetry down link. Thus, time
delays and temporary loss of communications to Earth are not a problem because no real time
control loops are closed via the up/down link. This also reduces the power consumption of rover
subsystems like telecommunication and makes Inore resources available for the actual locomotion.

Control Architectures are key elements to identify, define, and implement all the control aspects
needed to achieve the requiered autonomy. Then from the last decade, definition and design of
control architectures have been of major interest i n thc research field of autonomous mobile robots
[7][10][11][12][19] but however very little have been done for a high challenging scenario. This
paper is pionner in suggesting tools and procedures to design, implement, and maintain control
architectures for a highly complex mobile robot as a future Long Range Autonomous Planetan,
Rover [1][23].

Visiting scientist at JPL

Aleiandro Martin-Alvarez / 1/25

mailto:alex@telerobotics.jpl.nasa.gov

Submitted to: Artificial Intelligence, Robotics, and Automation for Space "i-SAIRAS 99", Noordwijk, The Netherlands

This paper covers three phases of building a complete control architecture for Long Range
Autonomous Space Rovers. The first phase is to build a Functional Control Architecture defining
what are the needed control functions and interactions among them. Second phase is to build an
Operational Control Architecture defining where all these control functions (either on-board or on-
ground) are located to achieve the desired control autonomy for a space scenario. An Operational
Control Architecture also defines extra operational support functions in addition to the control ones.
The last design phase is to build an Implementation Control Architecture defining how to implement
(software, hardware, or human intervention) all the control and operation support functions.

This paper presents frameworks, procedures, and an advanced tool to support the design of each type
of control architecture and the transition among them for a Long Range Autonomous Space Rover.
We used a graphical programming for the design of the control architecture as a common and
intuitive languague for a design team composed of managers, architecture designers, engineers,
programmers, and maintenance personnel. Graphical editors of Control Shell [8] are used for such
graphical programming. In addition, Control Shell provides a real-time software framework for the
implementation, debugging, maintenance of all control functions and interactions among them
defined in the design phase.

Chapter 2 describes the Functional Control Architecture for a Long Range Scientific Mars Rover,
defining first an Integrated Control Architecture (ICA) to put the Planetary Rover Control
Architecture into the context of the overal planetary exploration scenario. Later objectives and State
of the Art of Control Architectures for Mobile Robots are given and the Mobile Robot Control
Architecture (MORCA) is defined as the baseline for the Functional Control Archtecture of a Long
Range Scientific Mars Rover. Chapter 3 describes the Operational Control Architecture for a highly
and realistic autonomous planetary rover. Finite State Machines and Data Flow Diagrams are shown
for the design of this architecture using Control Shell toolkit. Chapter 4 describes the basic approach
for the Implementation Control Architecture and Chapter 5 gives experimental result with the JPL
micro-rover rocky7 when executing autonomously a high level task.

2. Definition of the Functional Control Architecture for a Space Rover

The Functional Control Architecture specifies what are the needed control functions and interactions
among them. Creating this architecture is the first phase of the design.

2.1 Integrated Control Architecture (ICA)

Following the top-down design approach, we first define the Integrated Control Architecture (ICA)
to support general space scenarios dealing with several cooperative elements such as robotic arms,
orbiters, landers, and planetary rovers. The major characteristics of ICA are:

0 contains the functional control architectures of all the space elements that take part fully or
partially of a space mission,

0 a common mission layer is defined on top of all the element control architectures. The common
mission layer has as input a common mission that is decomposed (planned or scheduled) into task
commands for each space element. The global mission layer controls the execution of the space
mission, for example controlling the sequence of tasks (dispatching),

0 allows the placement of control functions of one space element on different space element in order
to achieve optimal overall performance,

0 shows the communication among the control functions.

Aleiandro Martin-Alvarez / 2/25

'd Submitted to: Artificial Intelligence, Robotics, and Automation for Space "1-SAIRAS 99", Noordwijk, The Netherlands

The definition of these interactions among control functions in different elements play an important
role in a space mission based on planetary rovers. Interactions are needed when some elements are in
a better position to carry out control functions of other elements. For example a planetary rover is in
better position than a lander to carry out landing functions in real time, uplinkmg either relative
positions and attitude between lander and landing site or landing trajectories.

The main apportation of the Integrated Control Architecture (ICA) to this paper is to emphasize that
the functional control architecture of a planetary rover has to be open to interact with other space
elements.

Mission Mission
Status f ! Command

I Mission Layer 1
I I

0
A 4 A R2 L L 0

A1 A1 R1 Navig. Navig. ' Navig. Navig. 4 Navig.
Task Task R1 R 2 Comds Status Comds ,R20 Status Comds
Status Cmvnands Status Corn& Status IOR2 Navig. Navig. Navig.

I I

Fig. 2. Integrated Control Architecture (ICA)

2.2 Objectives and State of the Art

The main objectives of a Functional Control Architecture for a planetary rover are:

Generality: To be a general framework to allow a better understanding of all the functions needed
to achieve the design requirements of a control system, in order to fulfill a specific mission (see
Table l), independent of operations and implementation features (control hardware, control
software, and human intervention),

0 Inter-Element Cooperation: To support the interaction among space elements (several planetary
rovers, robotic arms, orbiters, and landers) taking part of a mission, identifying what kind of
information or commands are exchanged among such elements. w: To unify in the same framework all the possible implementations of Rover Control
Systems.
Flexibility: To allow assessment of the capabilities and performances for each control

implementation as well as for different configurations of cooperation among the control
architectures of the elements taking part of a mission.
Robustness: To allow robustness both in the presence of uncertainties about the knowledge of the
environment, and in the presence of inaccuracies and limited performances in rover, sensors, and
actuators,

Aleiandro Martin-Alvarez 1 3/25

'I Submitted to: Artificial Intelligence, Robotics, and Automation for Space "i-SAIRAS 99", Noordwijk, The Netherlands

Ouickness: To allow execution in real time,
0 Savings: To achieve low cost

Mission Commands Definition Parameters
INSPECT-AREA Build a topographic map of the

environment.

SURVEY-SPACECRAFT1
ROVER

RELAY-DATA

INSTALL-INSTRUMENT

COLLECT-SAMPLE

RETRIEVE-ITEM

Survey lander, parachutes (Mars),
aeroshell shield (Mars) or other rover

Relay data from on-ground space
element (e.g. rover or lander) to
ground segment (e.g. Earth)
Deploy and install instruments.

Collect, retrieve or analyse soil or
rock samples.

Off loading of cargo items from
lander

<initial position>
<surface to inspect>
<final location>

<spacecrafthover location>
<area to survey>

<location of ground space element>
<location of ground segment >

<deployment location>
<type of instrument>

<sample location>
<type of sample>
<amount of sample>
crendez-vous point to return
samples>

<lander location>
<type of item>
<placement location>

Table 1. Space Rover Mission Commands

There are a great number of approaches for the design of planetary rover control architectures
without a common definition of control functions and terminology [10][11][12][19]. Even when
each mobile robot application and scenario could require specific control functions and interaction
mechanisms among them, a common functional control architecture is of great interest for the sake
of a better understanding and assessment of capabilities. Also, a complete Functional Control
Architecture for a future Long Range Autonomous Space Rover is mandatory to handle the control
complexity that was never required in previous spacecrafts [24][26].

Three main approaches for functional control architectures have been defined in the last ten years:
hierarchical, behavioral, and a hybrid of both.

Pure Hierachical Architectures. In this organization scheme based on a hierarchy of layers, decision
malung processes are present at each resolutiodabstraction level to either generate action commands
to the lower adjacent level or perceptual information to the upper one [101 [181 [191.

Pure Behavioral Architectures. The central idea of behavioral architectures is that a control system
consists of the desired external manifestations or behaviors of the system. There is not any goal
decomposition at execution time. This is done in the architecture design since goals do not change
from one problem to the next [1 11 [121.

Hybrid Architectures. These architectures try to combine hierarchical and behavioral approaches.
Hybrid architectures are a consequence of either an evolution of behavioral architectures or the
definition of a new architecture taking the most relevant advantages of both approaches [2] [16].

Aleiandro Martin-Alvarez 14/25

b ‘1 Submitted to: Artificial Intelligence, Robotics, and Automation for Space ”i-SAIRAS 99”, Noordwijk, The Netherlands

Pure hierarchical architectures are good to define clearly all the control functions needed but fail in
real time execution having too much high level reasoning even without dealing with all the
uncertainties and constraints of a real rover application. Pure behavioral architectures are good in
real time execution reacting rapidly with the environment without high level reasoning but fail both
when the intelligence required is high and in a very complex scenario. Hybrid architectures are the
answer to our scenario and several designs have been done but however all of them were used in
simple scenarios. Our goal is to define a hybrid control architecture that combine properly all the
advantages of control and AI techniques for a Long Range Scientific Mars Rover working in a very

. complex planetary rover exploration scenario.

2.3 Mobile Robot Control Architecture (MORCA)

To accomplish all these objectives, the Mobile Robot Control Architecture (MORCA) [2] was
defined as a general framework, mapping well-known approaches from the literature [101 [1 13 [121
[161 [181 [191. MORCA proved that behavioral and hierarchical approaches are not in conflict. The
only difference is whether control functions are used in execution or in preparation.

For the design of a new functional control architecture for a Long Range Autonomous Space Rover,
we use the top-down task decomposition engineering approach followed in the hierarchical Mobile
Robot Control Architecture MORCA [2] [5]. This decomposition of the problem into lower level
functions together with an exhaustive definition of the commands and data among them, allows a
better understanding, test and update of a complex rover control architecture. The levels of the
MORCA architecture correspond to a subsequent refinement of commands to the mobile robot, from
highest level mission commands via commands on navigation, piloting, wheel motion coordination,
to individual wheel control commands.

The sequence of different tasks or mobile robot command levels has been identified, increasing in
complexity and abstraction, as it is shown in the following table.

M.R.command levels Mobile Robot commands Similarity with human commands
Degree 6
(Mission Comds)

Degree 5
(Navigation
Commands)

Degree 4
(Piloting Comds)

Degree 3
(Trajectory
Commands)

Degree 2
(DeviceControl Cmds)

Degree 1
(Control Outputs)

a) Inspect area
b) Collect sample

a) Go to a location

a) Stay in a direction until event
b) Follow/Reach an object until
event

a) Border/Follow object
b) Go straight object
c) Stay in direction
e) Reducefincrease speed

a) Steering Angle
b) Speed

a) 5 Volts to Motor 1
b) Switch on a brake

High level of messages between two people
(the boss to his employee)

Commands from a person, in an unknown
city to a taxi driver to go to a specific
address

Commands to a car driver to reach an
address expressed by an occupant who
knows how to go

Driver commands to a learner

Car driver control actions

Electrical Signal from the nervous system to
muscles

Table 2. Mobile Robot Command levels.

Aleiandro Martin-Alvarez 1 5/25

a ' I Submitted to: Artificial Intelligence, Robotics, and Automation for Space "i-SAIRAS 99", Noordwijk, The Netherlands

Table 2 shows a hierarchy in mobile robot commands where all commands of degree i can be
transformed into a set of commands of degree i - I . The decomposition and the control of such
commands are performed by a set of functions contained in a control architecture. Because of the
mentioned hierarchy in mobile robot commands, our approach for the definition of Mobile Robot
Control Architecture (MORCA) also follows a hierarchical structure, based on different layers. The
more the layers are able to work autonomously (no human presence), the more complicated are the
tasks which the rover achieve itself.
MORCA is structured into a hierarchy of functional layers where each layer is structured into three
parallel functional branches based on the concept of feedback control [7] [171:

Forward Control (FC). Responsible for activity decomposition, execution planning, control, and
command dispatching.
0 Nominal Feedback (NF). Functions for refinement and update of a priori knowledge ("world
models") based on the actual, but essentially expected, evolution of the process and consequently
formulation of controlled adjustments of the FC.

Non-Nominal Feedback (NNF) takes care of the correct functioning of this layer, detecting and
analysing non-nominal situations. It contains functions for the monitoring of discrepancies between
actual and allowable states in both the FC and the NF functions, diagnosis of their origins, and
generation of directives and constraints for FC.

A Mission cwnmands Missan A
Status of degree 6. &,,,msnds

\ /
\

Task Planning

Feedback \ / Feedback

Non Nominal

Task Control

MISSION LAYER
, \

Navigation / \
Senswial Navigation Commands Navigation

Navi(

Information staius of degree 5 Commands I%
I

I I

Nominal Non Ncininal

Feedback

t

Path
/

1 %
Feedback

Path Control
&

I NAVIGATION LAYER T
I

~~

I
Sensoorial
Pibting
lnformatbn ststus

Pibimg ' Commands Pibting \ Pibtir
Repa
lnforr of degree 4 Commands

\ /

Trajectory Planning

f Traiectorq

Nominal \I/ Non Nominal
Trajectory

Feedback - Sequence Feedback
Control

Trajectory Commands
Control f degree 3

J \
/ \

Trajectory
Controllers \ J

Commands

Nan Nominal
Sensor
lnprt

Nominal
Sensor
I n p u t PILOTING LAYER

Commands Control
, of degree 1 outputs

MOBILE ROBOT
Sensors and Acluaton

Figure 1. Mobile Robot Control Architecture.

Aleiandro Martin-Alvarez I 6/25

1 Submitted to: Artificial Intelligence, Robotics, and Automation for Space "I-SAIRAS 99", Noordwijk, The Netherlands

An example of the Forward Control activity decomposition and planning is given in the appendix A
where: navigation nominal feedback updates the map and localizes the mobile robot, destination,
places of interest, and path segments inside the map; navigation non nominal feedback detects when
the mobile robot gets lost, generates strategies to find references for localization, and deals with
unexpected situations reported by the pilot; piloting nominal feedback detects environment features,
estimates trajectory status and rover internal state, and provides world model updates to navigation;
and piloting non-nominal feedback detects hazards, for example unexpected rocks or loose sand,
and generates the needed recovery strategies. Due to the modulatity of the architecture in layers and
functions, fast execution is possible using parallel computation.

A similar structure of MORCA can be used for the control system of other elements, such as robotic
arms or spacecrafts, taking part of the same mission. Also inside each element interaction among
different S/Ss (e.g. motion, thermal, and power control) is supported. In this way, MORCA also
supports the interaction among control functions in different mission elements. each control
architecture in ICA is based on MORCA as will be explained next,

2.4. Functional Control Architecture for a Long Range Scientific Mars Rover

A Long Range Mars Rover is a complex spacecraft containing a set of elements, such as a mobile
platform, manipulator, pointable cameras, and scientific instruments, where each of these elements
has its own control system (see Figure 3).

Aleiandro Martin-Alvarez I 7/25
k- ~~~ ~

. ' 1 Submitted to: Artificial Intelligence, Robotics, and Automation for Space "i-SAIRAS 99", Noordwijk, The Netherlands

In addition, as a regular spacecraft, each control system is divided into several subsystems, such as,
locomotiodpropulsion, thermal, power, and telecommuniation (see Fig. 4).

Figure 4. Spacecraft Control Subsytem

Following an ICA structure, a centralized mission control layer, called micro-Rover Commander for
a Mars rover scenario, has to be added to command and to coordinate all the rover elements.

Following the MORCA and ICA design philosophy, first an exhaustive definition of the commands
and data transfer among rover elements [l] [20] is required to define the Functional Control
Architecture for a Long Range Scientific Mars Rover. Table 3 shows the set of Sojourner and Rocky
7 Body Motion Commands as an example.

Body Motion Control

Sojourner 1 I Rocky 7

Capture-Image-with-Camera <c> Pilot-update <x,y,z,theta>
at-Exposure <t>, Return-Region-from i (in panorama frame, degrees from
(r1,cl) to (r2,c2) with APID <id> ; North)

Go-to-Waypoint-at <x,y> within <m> I Pilot-goto <x,y> (in panorama frame)
Minutes Pilot-gotodirect cx,y> (in panorama

Material-Adherence
Move-Backward cn> Counts i Pilot-head ctheta,x>
Move-Forward <n> Counts ; (degrees from North, distance)
Set-Parameter <Maximum squeeze mode I Pilot-head-direct <theta,x>

Set-Parameter <Traverse cycle distance> =
Turn-Left cn> Bams I

Turn-Right <n> Bams
Turn-to-Heading <h>
Turn-Towards cx,y>

I
I frame)

navigation> = <Value> i Pilot-face <x,y> (in panorama frame)

<Value> I
I

I
I
I
I
I
I

Table 3. Sojourner and Rocky 7 Body Motion Commands

Aleiandro Martin-Alvarez 18125

I Submitted to: Artificial Intelligence, Robotics, and Automation for Space "i-SAIRAS 99", Noordwijk, The Netherlands

Once all the Commands were defined for each element control system and for its subsystem, then all
the control functions (see Table 4) are identified following the hierarchical principle of MORCA.

Micro-
Rover
Control

Micro-
Rover
Commander

Platform
Control

Manipulator
Control

Mast
Control
Payload
Control

r
Locomotion
Control

Thermal
Control
Power Control
Telecom
Control

Navigation Layer Path Panning +
Control

Control

Piloting Control Coordination
Layer Level

Body Layer

Planning + Wheel

Planning +

Wheel Level Planning +
Control

Actuator & Sensor Planning +
Level Control

Actuator & Sensor Level

Actuator & Sensor Level
Actuator & Sensor Level

Task Layer
Action Layer

Planning + Control

Actuator & Sensor Level
Actuator & Sensor Level

Planning + Control Action Layer
Planning + Control Task Layer

Actuator & Sensor Level
Planning + Control

1
Table 4. Control Functions for a Long Range Scientific Mars Rover

However, there are rover element control S/Ss (e.g. mobile platform locomotion S/S) that are more
complex than others needing a higher refinement of commands. Here again, MORCA design
philosophy are succesfuly applied.

3. Design of the Operational Control Architecture for a Space Long Range Science Rover

Once the needed control functions and interactions among them are defined in the Functional
Control Architecture an ODerational Control Architecture2 defines where all these control functions
are located (either on-board or on-ground) to achieve the desired control autonomy for a space
scenario. An Operational Control Architecture also defines extra operational support functions (see
Fig. 5).

2 Notation: The two parallel lines for data store, discontinous line for syncronization signal and arrow for data flow.

Aleiandro Martin-Alvarez 19125

* , Submitted to: Artificial Intelligence, Robotics, and Automation for Space ”i-SAIRAS 99”, Noordwijk, The Netherlands

Figure 5. Operational Control

3.1. Commands and Information Transfer

Commands and information transfer are basically designed as single messages and queues where last
ones require extra pointers, e.g. a waiting and a execution pointer. Two main types of queues have
been implemented, FIFOs (First Input First Output) and LIFOs (Last Input First Output). The first
type was the one mostly used and the last one was mainly used for non-nominal event
communication. In addition, these queues support Artificial Intelligence reasoning techniques based
on queue manipulation.

Figure 6 shows this inter-communication in a controllplanning module. The two parallel lines
include the name of the information to transfer (e.g. Data and Commands Parameters) and its
associated discontinous line is a signal or stimulus to represent an event (e.g. a Command). This
information is stored in FIFO queues except the non-nominal ones (Input 1.4 & Output 1.4) that
follow a LIFO structure.

“Interaction with
other element/device
controllers.

11 -KeP-$K!.’:.
Input f.1 0°F ‘ *

E Feedback
To / from Non Nominal

~~

Outout 1.3 InDul

From-/ to higher level

Figure 6. Intercommunications in a ControlPlanning Function

Aleiandro Martin-Alvarez / 10/25

1 - t Submitted to: Artificial Intelligence, Robotics, and Automation for Space "i-SAIRAS 99", Noordwijk, The Netherlands

The complete set of on-board Control and Operation Support functions for a Space Long Range
Science Rover [1][20] are given in the following table using the MORCA design philosophy.

Operational
Control
Architecture

Operation

Module
support

Command and

Telemetry Management
Mangement Telemetry
Command

Control Operation Supervisor
Logistic Module
System Administrator

Management

Micro-Rover Control (see Table 4)

Table 5.On-board Rover functions for the Operational Control Architecture

3.2. Capabilities needed for the Operational Control Architecture of a Space Long Range
Science Rover

A highly autonomous rover is mandatory for Space Long Range Science Missions. With more on-
board control functions there is a greater possibility that the mission goals will be reached. However,
on-board control functions (including sensors and actuators) can fail requiring external help.
Therefore flexible placement of operation support and control functions are needed between the
Ground and Flight Segments to reconfigure the Operational Control Architecture.

In addition, this architecture reconfiguration is needed for different mission phases. For example,
safety is the main issue at the beginning of a space mission, placing most of control functions on the
ground segment with highly human intervention (human on the control loop). However, at the end of
the mission, more challenging and highly autonomous rover tasks will be commanded having most
of the control functions executing on-board.

Architecture configuration is also needed to handle anomalies like software malfunctions or loss of
communication, where on-ground control functions are completely useless. Therefore, the rover
automatically has to reconfigure its Operational Control Architecture in order to become more
autonomous and find recovery strategies to establish communication to Earth.

As a conclusion, a Space Long Range Science Rover must have the capability to receive high and
low level commands.

For a spacecraft, and then for a space rover, there are four major Operation Support Functions:
Command and Telemetry Management (CTM); Control Operation Supervisor (COS); Logistic
Module (LM); and System Administrator (SA), as shown in Figure 7.

Aleiandro Martin-Alvarez / 11/25

I - 8 Submitted to: Artificial Intelligence, Robotics, and Automation for Space "1-SAIRAS 99", Noordwijk, The Netherlands

To Ground Segment From Ground Segment

Figure 7. Main Operation Support Functions for a Spacecraft
The Command Management Module distributes the commands received from ground to the
Telemetry Management Module, LM, and SA. The Telemetry Management Module handles the
downlink of all the telemetry data accumulated in its input buffer. It also generates a heartbeat, and
establishes telecommunication signals to Earth. See Figure 8.

Figure 8. Structure of the Command and Telemetry Management

The Logistic Module (LM) contains the rover clock and computer hardware supervisor. It sends
clock signals to other modules, for example a wake up signal. System Administrator (SA) is in
charge of the file system making sure that there is enough computing resources available for the
execution of operation support and control functions.

Aleiandro Martin-Alvarez / 12/25

#, ’>, Submitted to: Artificial Intelligence, Robotics, and Automation for Space ”1-SAIRAS 99”, Noordwijk, The Netherlands

LM Data.
Time & Date [

I
Comd

+ Cmd Parameters

Fig. 9. Main Functions of the Logistic
Module (LM)

The Control Operation Supervisor (COS) is in charge of: resources management and health care;
distribution of the received commands from CM to any control function checking they are consistent
with the current operation mode; reconfiguration of Operational Control Architecture when both
anomalies occur like loss of communication to Earth and wake up signal is received when the rover
was in “stand by” (e.g. during the night).

3.3 Design using Graphical Programming, Classic Control Concepts, and Artificial
Intelligence Concepts.

The design of an Operational Control Architecture for a Planetary Long Range Science Rover
[1][23] needs of a real-time framework for engineering control design dealing with the complexity
of large projects, real-time software, event processing, feedback control, and interacting teams of
programmers, engineers, managers, and maintenance personnel. Therefore we use graphical
programming for our design promoting understandability and as a consequence the design is quicker
to learn, faster to develop, easier to debug, and less costly to maintain.

We use the well-known classic control concepts of Finite State Machine, Dataflow Diagrams, and
classic queue manipulation for the design of the whole architecture. Finite State Machines are used
for event-driven reaction and Dataflow Diagrams for synchronous cyclic data processing including
the implementation of AI behaviors.

3.3.1. Guidelines for the use of Finite State Machines and Dataflow Diagrams

An Operational Control Architecture must be designed to work in real time, that is, fast command
execution and fast reaction to events stablishing priorities among them. It is also mandatory for
inter-communication efficiency and good controlability of the functioning of the Operational
Control Architecture, to minimize the number of control functions working in parallel, that is, to
minimize the number of Finite State Machines and Dataflow processes (both Operating System
processes) but still keeping the required real time performance. Thus, it was found convenient to
design a Standard Finite State Machine structure that group several control functions that were
already defined in the Functional Control Architecture.

We group Planning, Control, or Dispatching functions together with Nominal, Non-Nominal, and
External Event Handling functions for any architecture layer (see Figure 10). A subset of this
structure is also used for Operation support functions.

Aleiandro Martin-Alvarez / 13/25

I Submitted to: Artificial Intelligence, Robotics, and Automation for Space "I-SAIRAS 99", Noordwijk, The Netherlands

This grouping was selected because these functions are exclusive, that is only one is requiered to
work at once and because this grouping contains the mechanisms that establishes the desired priority
in their execution. For example, whenever a diagnosis and recovery strategy generation function
takes place only its execution is requiered at its layer, without considering the execution of nominal
planning or any nominal control action. At the same time, a non-nominal event has the highest
priority in its layer canceling the execution of any other control function in progress.

A secondary advantage of this grouping is that all these control functions share the same inter-
communication function to communicate with other Finite State Machines either in the same or
different control layers via the already mentioned Queues.

Figure 10. Standard Finite State Machine structure for Planning or Control Functions

Dataflow diagrams are used in the Operational Control Architecture for continuos cycle sequences
for example as sequence composed of nominal feedback (including sampled data feedback),
planning, control, and motor driver activation (see Fig. 11). Sometimes a subset of this whole
sequence is only required, for example standalone Nominal Feedback functions that can run
independently to detect nominal events (e.g. a trajectory final condition reached) that communicates
to a Finite State Machine via its NF queue.

Aleiandro Martin-Alvarez / 14/25

c -6 Submitted to: Artificial Intelligence, Robotics, and Automation for Space "I-SAIRAS 99", Noordwijk, The Netherlands

Input 1.2a Output 1.2e
I

activ.()/ disactiv.0 1 NF- CE-Config-X.

"CFN-Cmd"

Figure 1 1. Schematic DFE structure for a Rover Control Continuous Cycle Sequence

Dataflow Diagrams are also used for Non Nominal Feedback monitoring, maybe sharing some
components with the NF. This NNF monitoring has the capability to communicate a non-nominal
event to a Finite State Machine, that is performing control or planning tasks, via its NNF Queue (see
Figure 12).

activ.()/ disactiv.0

I
Figure 12. Schematic DFE Structure for a Non Nominal Feedback Monitoring Function.

3.3.2. Control Shell Tool

Our control architecture design uses the commercial Control Shell Tool [8] because is compliaced
with our requirements of graphical programming and the concepts of Finite State Machines for
event-driven reaction and Dataflow Diagrams for synchronous cyclic data processing. Control Shell
also supports object-oriented modelling for the control design and implementation.

Aleiandro Martin-Alvarez / 15/25

I i Submitted to: Artificial Intelligence, Robotics, and Automation for Space ”i-SAIRAS 99”, Noordwijk, The Netherlands

In addition, Control Shell provides system configuration control for changing operating modes and
real-time matrix mathematics package (CSMat) useful for real time AI reasoning based on queue
manipulation mandatory for a highly Autonomous Long Range Science Rover.

Figure 13 shows what a FSM looks like in the CS FSM graphical editor. Boxes represent states and
arrows the transition among states. A name in quotes represent a stimulus, that is the event, and after
the slash appears the transition function as the action after the event. The return codes of a transition
function, used for decision making, select the next stay to stay waiting for a new event.

Figure 13. Example of a FSM in the Control Shell FSM Graphical Editor

Figure 14 shows how a DFE looks like in the CS DFE graphical editor. Boxes represent
components, arrows represent the data flow connecting inputs and outputs (left and right side
respectively) of the components, each arrow has associated the name of CSMat used a
communication data, and the lines above of each component represent component’s parameters
mostly in CSMat format (constants are allowed as well).

Aleiandro Martin-Alvarez / 16/25

') Submitted to: Artificial Intelligence, Robotics, and Automation for Space "I-SAIRAS 99", Noordwijk, The Netherlands

4. Design of the Implementation Control Architecture for a Space Long Range Science Rover

Once the Operational Control Architecture defines the location (on-board and on-ground) of control
and operation control functions, Implementation Control Architecture, defines how to implement
them (software, hardware, or human intervention). The well known software architecture in the
computing science community, is only the software side of a Implementation Control Architecture.

For the design of this Control Architecture, we used the mentioned Control Shell tool, that using
Object Oriented Programming templates, generates the C++ based structure (declaration of functions
and input and output parameters) for each piece of code both for DFE components and FSM
transition functions.

For our applications, we use the VxWorks Operating System running on top of a VME chassis.

5. Experimental Results

5.1 Rocky 7.
The JPL-NASA micro-rover Rocky 7 [21] was
used as breadboard for Control Architecture of
a Long Range Autonomous Space Rover.
Rocky 7 (see Fig. 15) is a research micro-rover
used to demonstrate new technology concepts
for use in a long range (>1 Km) traversal
across Mars, scheduled for early in the next
decade. Its locomotion is a modified six wheel
rockerhogey similar to Sojourner (NASA Path
Finder mission).

Its main features are: 1) size: 60 x 40 x 33 cm;
2) mass: 15.7 kg; 3) power: rechargeable
NiCad batteries and Si solar panel; 4)
computer: 3U VME, 68060 CPU, 100 MIPS;
5) Science Payload: a selection of IR
reflectance spectrometer, color filter stereo
imager, multispectral close-up imager, and
Mossbauer spectrometer; 5) 4 DoF Arm; and
6) a camera Mast able to deploy itself 1.4m
above the ground.

Figure 15. JPL-NASA Micro-Rover Rocky 7

Aleiandro Martin-Alvarez I 17/25

2 Submitted to: Artificial Intelligence, Robotics, and Automation for Space "I-SAIRAS 99", Noordwijk, The Netherlands

5.2 Experimental results with Rocky 7 Technological Micro-Rover

Following MORCA and ICA principles, a full control system for a Long Range Autonomous Mars
Rover has been designed using the graphical editors of Control Shell. As a first implementation step,
a distributed task execution and a fully autonomous piloting layer have been implemented. The
distributed task execution consists that both the stereo camera mast, mobile platform, and robotic
arm independently execute and handle its own command queues and the rover commander
coordinates all of them. The fully autonomous piloting layer achieves continuous driving without
stops for obstacle detection or the planning of a new path segment. Also some operation support
functions, as command management, have been implemented simulating a "real" space mission.

In the testing scenario, first the camera mast is deploied taking pictures and later a ground segment
operator uses his knowledge about the rover environment and position, and the desired destination,
to generate a path consisting of a set of path segments (see Appendix A for a complete example),
being the operator supported with a path planner tool. The last task is when that the robotic arm
takes a sample in the desired destination. In our testing scenario, navigation path planning is done
off-line, by creating a set of consecutive path segments with the parameters: motion direction
(forward or backward), cruise speed, final condition, final condition accuracy, and dispatching mode
(syncronous or asyncronous), and stop mode after its execution.

The execution of four path segments are shown in the Figure 16, where the first two path segments
(from (0,O) to (3,2) meters and from (3,2) to (5,2) meters respectively) consist in: high and slow
speed forward motion respectively, the third one (from (5,2) to (4,3) meters) in low speed backward
motion, and the last path segment (from (4,3) to (4,2.8) meters) in order to face the sample to
observe consists in a very slow forward motion.

0.4 tn/div Offset - 2.5

..................................,. : \ : :
: ,? ;

.,. ., .,. ..,. .,. . I . ../ .\ 4-

-
Figure 16. Plot in Real-Time of the Rocky 7 Trajectory on the JPE

Mars Yard using Control Shell SetScope Tool

Aleiandro Martin-Alvarez / 18/25

I t
.. Submitted to: Artificial Intelligence, Robotics, and Automation for Space "i-SAIRAS 99", Noordwijk, The Netherlands

Once the execution of all these path segments are executed autonomously then the rover reports back
to the operator that his command was successfully executed. However if the rover cannot find a
recovery strategy for a non-nominal situation then the operator will be asked for help and the control
operation mode changes in such a way that some control functions switch from software or hardware
to operator in the loop.

In detail, the testing of the autonomous piloting layer consists of

The ground segment operator generates a sequence of tasks for the camera mast, rover piloting,
and robotic arm, and uplinks it via ethernet (simulating DSN).

An ethernet input control Shell component reads all the received tasks from a VxWork socket and
traslates them into Control Shell format (CSMat). Later this ethernet input component introduces all
these tasks to the input data queue of the Command Management FSM sending a stimulus to
communicate that ground data is ready to process.

The Command Management FSM interprets the input data, and in this case, send it to the Control
Operation Supervisor function (COS), see Fig. 7, that does its own interpretation as well. The
Control Operation Supervisor function dispatches a block of commands sequentially to the Mast
Control (MC), to the Body Motion Control FSM (BMC), and to the Robotic Arm Control. See Table
4.
0 For each path segment, the Body Motion Control FSM will activate several control functions as
Control Shell (CS) components that must work in real time. These control functions are:

Path segment control consisting of a set of consecutive components for both the piloting
nominal feedback (encoder and angular rate sensor reading and position estimation) and piloting
forward control functions based on the behavioral approach of having several controllers working
in parallel (e.g. a speed and steering controller components) fusioning their outputs (behavior
fusion component). See Figures 11 and 12.
0 Body Motion Control will also command to the Wheel Coordination Planning and Wheel
Motion Control Layers to activate the inverse kinematic, for Ackerman steering, and wheel motor
driver components respectively.
0 Piloting Nominal Feedback of Final Condition consists in a component to detect a Cartesian
point was reached (see Fig. 12).
0 Piloting Non Nominal Path segment monitoring based on an optical vision system [22]
consisting of a set of consecutive components: camera data readers, warpers, Laplacian filters,
stereo matching, range and elevation map generators, and obstacle detector (see Fig. 17).
0 Piloting Non Nominal Feedback of Rover attitude monitoring consisting of a set of consecutive
components: bogies angle data readers, filter, and dangerous attitude detector.
0 Piloting Non Nominal Feedback of Rover motor monitoring consisting of a set of consecutive
components: motor current reading, current filter, and max current detector.

0 The Final Condition component will send a message to the BMC nominal feedback queue (see
Figures 10 and 12) when the desired Cartesian coordinate is reached. Then the BMC will ask for next
path segment to COS. If syncronous communiation was selected then COS will send next path
segment if any, otherwise the whole path is executed communicating of this fact to the Telemetry
Manager FSM that will downlink this event to the ground operator.
0 The obstacle and attitude detector, and max current detector will send a message to the non
nominal queues of the BMC and WMC FSMs respectively (see Fig. 10 and 12) when its
correspondent failure is detected. Hazard recovery strategies will be generated. However if no
recovery strategy is possible will downlink this event to the ground operator asking for help.
0 Similar control functions to the BMC are activated for the stereo vision mast and robotic arm.

Aleiandro Martin-Alvarez / 19/25

Submitted to: Artificial Intelligence, Robotics, and Automation for Space "i-SAIRAS 99", Noordwijk, The Netherlands

Figure 17. Range Map, Vision Camera Images, and Elevation Map respectively from the Rocky 7
Piloting Non-Nominal Path Segment Monitoring

6. Conclusions and Future Work

A full design of a complete control architecture for a Long Range Science Rover Control System
have been proved and the implementation of an autonomous piloting have been shown using
successfully the JPL-NASA micro-rover Rocky 7.

A sequence of three Control Architectures (Functional, Operational, and Implementation Control
Architectures) have been presented as a good methodology to design a complete control architecture
for a complex Space Rover.

An Integrated Control Architecture (ICA) was efficiently shown for inter-element cooperation where
the motion control system of each element is based on the Mobile Robot Control Architecture
(MORCA) structure.

Space Rover Control Architectures have been successfully shown that they are consistent with
MORCA which has extensively been used to define the control architecture for planetary mobile
robots, defining a hierarchy of control layers and the internal structure for each layer (Nominal
Feedback, Forward Control, and Non Nominal Feedback).

As a gained experience, a pure hierarchical architecture without Non-nominal Feedback
(contingency detection and recovery) are the optimum ones. However, due to all the high
uncertainties and inaccuracies in a space rover and the mission itself when planning and control are
done, non-nominal feedback is needed to take care of the functioning of each control layer and
recover the rover from dangerous situations.

ih'.
,..A

% A combination of reactive and planning techniques together have been presented for the
I;, implementation of the piloting control subsystem to fulfil the severe control requirements of a space 1"' ,

mission as to handle hgh level of uncertainty and inaccuracies.

An autonomous piloting layer has been implemented to successfully achieve in real time continuous
driving, detecting and handling non-nominal situations. This real time operation had to deal with the
complexity of having numerous and powerful control functions with different operation modes like:
cyclic processing of a sequence, parallel execution at convenient sample rates, and event-driven
interactions for syncronization, and detection of nominal or non-nominal situations.

,.

Aleiandro Martin-Alvarez I 20125

1 i Submitted to: Artificial Intelligence, Robotics, and Automation for Space "i-SAIRAS 99", Noordwijk, The Netherlands

[23] R. Volpe, J. Balaram, T, Ohm, and R. Ivlev. The Rocky 7 Mars Rover Prototype. In IEEE//RSJ
International Conference on Robots and Systems (IROS), Osaka, Japan, November 4-8 1996.

[24] P. Fortescue, J. Stark. Space Systems Engineering. Wiley Publisher.

[25] J. R. Wetz. Spacecraft Attitude Determination and Control. Kluwer Publisher.

[26] W. L. Larson, J. R. Wertz. Space Mission Analysis and Design. Space Technology Library.

[27] M. H. Kaplan. Modern Spacecraft Dynamics & Control. John Wiley 8z Sons Publisher.

Aleiandro Martin-Alvarez I 23/25

r Submitted to: Artificial Intelligence, Robotics, and Automation for Space "1-SAIRAS 99", Noordwijk, The Netherlands

APPENDICES

APPENDIX 1

Landmark-RA

Landmark3 Planetarv

D
Landmark-4 R

Rp
Landmark-3

L

Figure 18. Example of Execution of Mission Cmds

A) Mission Command: "COLLECT-SAMPLE <sample A>"
B) Navigation Command: "GO-TO-LOCATION <sample A>"
C) Piloting Commands:

C.1) MOVE-TO <Final condition: cardinal point PI>; <Motion reference: cardinal point P1>

C.2) REACH <Final condition: cardinal point P2 & external object: landmark-1, in front, distance

C.3) BORDER <Final condition: cardinal point P3> <Motion reference: external object:

C.4) MOVE-TO d;inal condition: cardinal point P4 & external object: sample A, in front,

<Motion direction: forward>

d2> <Motion reference: external object landmark-l> <Motion direction: forward>

landmark-1, on the right, distance d3> <Motion direction: forward>

distance d4> <Motion reference: cardinal point P4> <Motion direction: forward>

Aleiandro Martin-Alvarez I 24/25

